NOW, COLOR DIAGRAMS

of Glasses & Optical Liquids

Research Quality is our Standard

SPECIALTY OPTICAL LIQUIDS

Cargille Specialty Optical Liquids Index

SPECIALTY
OPTICAL
LIQUIDS

CARGILLE SPECIALTY OPTICAL LIQUIDS INDEX

	in the second se	JEX	
□ II prov letin	nta Available and Custom Changes on addition to the "typical" optical data rided at no charge in the Technical Bul- s for each product, specific data print- are available on most liquids. Custom	■ Laser	Liquids" High stability, low toxicity, custom blended optical liquids for use with laser and other wavelengths.
mod or o	sical characterization changes or formula iffications to attain specific mechanical ptical properties can be ordered.	■ Fused	☐ Colorless optical couplants designed for exact matching with fused silica for liquid prisms, optical and laser systems. Full optical characterization data available.
	Index Liquids		able.
divid	standard Series consists of 222 liquids ded into seven different series extend-	■ Optica	I Gel
	in range from 1.300 to 2.11.		☐ High temperature/high transmittance stable gel, eliminates or reduces internal
of r	ertified Series (AA, A, B) cover the range nost minerals, most chemicals and ctically all biological materials.		reflections in fiber optic systems and can be used for optical fiber mode stripping.
		Meltm	
liqui 1.80	ligh Dispersion Series consists of 64 dds (3 series) with a range of 1.500 to 00. Use for dispersion staining, focal sking and double refractometry.		☐ Patented thermoplastic mounting media for temporary or permanent optical inter- face (rigid, without the containment re- quired with liquids) with specific n . Melts /remelts at 65°C. Cleans off easily with
	Refractive Index Melts, 2.12 to 2.31: melting solids.		xylene.
		■ Diagra	ams of Cargille Optical Liquids
Liqu	Liquids ormulations similar to Refractive Index ids but less expensive (characterized at one wavelength). Intended for detection		Presented in the same form as optical glass diagrams, Cargille Optical Liquids are plotted for refractive index versus dispersion.
of st mers blen 1.29 wave	riae in optical solids (prisms, etc.) by im- sion in specific n _D liquids. Custom ded to desired indices between 3-1.700 at desired temperature and elength and for special chemical and sical properties.	□ Note	☐ Unless otherwise noted, all Refractive index values are stated at 5893 Å (n _D) and 25°C.

Optical Data Available and Custom Changes

OPTICAL DATA AVAILABLE and CUSTOM CHANGES

CARGILLE LIQUIDS TYPICAL CHARACTERISTICS COMPUTER PRINTOUTS

In addition to the "typical" optical data provided at no charge in the Technical Bulletins for each product, specific data printouts are available for many of the physical and optical characteristics of the laser liquids and most of the Immersion and Refractive Index Liquids. These printouts can be for any refractive index, at any wavelength, and any temperature within the limits of the particular liquid. It is important that the

user of these printouts understands what they are and are not.

The computer printouts represent average or TYPICAL values. Specific optical values of any particular batch of Cargille liquid can be obtained when requested at the time of purchase. See prices for applicable charges.

CUSTOM CHANGES

Custom changes are available at additional charge.

Custom changes from the standard values supplied with a Cargille liquid may be one or more of the following:

1. PHYSICAL CHARACTERIZATION

A. WAVELENGTH:

Read at other than 5893 A and/or dispersion coefficients.

Range is 4358 to 11000 A

B. TEMPERATURE:

Refractive index or dispersion coefficient read at other than 25°C.

Range is 15°C to 40°C

C. TOLERANCE:

Read at other than±0.0005, or for Laser Liquids ±0.0002.

Range is ±.0002 to ±.00005

2. CUSTOM FORMULATIONS

A. SPECIAL PROPERTIES:

Dispersion, Viscosity, Color, Density, Stability and Transmission

Combinations.

B. DEVELOPMENT TIME:

Time dedicated to developing special properties or information.

CARGILLE LIQUIDS

TYPICAL CHARACTERISTICS COMPUTER PRINTOUTS

Cargille "Typical Characteristics" are computer generated from the best available measurements, estimates, and calculations. Typical Characteristics are not product specifications but represent average or TYPICAL values for a liquid of a specified formulation and refractive index. If any of the typical values need to be more precisely known, the user is urged to have further testing done.

- NOTE: 1) The term "actual liquid" in this bulletin refers to a liquid as purchased with specified refractive index and formulation whose physical and optical values are then compared to those in the Typical Characteristics sheet of the same refractive index and formulation.
 - 2) Each category of information in this bulletin might not be available on the Typical Characteristics sheet for the Code or Series in which you are interested. Such information may be available by phone.

CODES AND SERIES: These and the refractive index of a liquid specify the liquid's formulation.

REFRACTIVE INDEX VALUES: The maximum difference between the refractive index values on a Typical Characteristics sheet (or those calculated from the Cauchy equation on the same sheet) and the refractive index values of an actual liquid can be expected to be as follows:

Wave	lengt	<u>h</u>			m variation between Typical eristics and Actual Liquid
Ultra	violet	(angs	stroms)	Charact	Cristics and Actual Enquid
2400 2900 3370 3650	to to to	2900 3370 3650 4047		±0.02 ±0.005	 + tolerance of calibration + tolerance of calibration + tolerance of calibration + tolerance of calibration
Visible	e (an	gstron	ıs)		
4047 4800 7065	to to	4800 7065 8521		±0.0006 ±0.0003 ±0.0007	+ tolerance of calibration + tolerance of calibration + tolerance of calibration
Infrar	ed (n	nicron:	5)		
0.8521 1.1 1.5 2 5	to to to to	1.1 1.5 2 5 10		±0.001 ±0.005 ±0.01 ±0.03 ±0.07	+ tolerance of calibration

For example: A liquid blended to a refractive index at 5893 angstroms with a tolerance of \pm .0002 will have a refractive index value at 8400 angstroms \pm .0009 of the value on the Typical Characteristics sheet.

<u>CAUCHY EQUATION</u>: All refractive index values listed are calculations from the Cauchy equation on the same sheet.

<u>DISPERSION VALUES:</u> nF-nC, nF'-nC', and Abbe values for an actual liquid will normally be within 3% of the Typical Characteristics values. Variations as great as 10% have been observed.

TEMPERATURE COEFFICIENT: The change in refractive index with temperature. The Typical Characteristics sheets supply the temperature coefficient at D (5893 angstroms) per °C between 15° and 35°C. The temperature coefficient at D for an actual liquid is normally within 3% of the Typical Characteristics value, although variations as great as 9% have been observed. The temperature coefficient will vary slightly with wavelength; a typical liquid with a refractive index at 5893 angstroms and 25°C of 1.518 has a temperature coefficient at 5893 angstroms of -.000410, -.000420 at 4861 angstroms, and -.000408 at 6563 angstroms.

<u>COMPOSITION:</u> Cargille optical liquids are formulated from one or, more typically, two or more oils, solids, or polymers to give consistent and specified optical and physical properties. For each Code or specific refractive index range of a Series, the formula components will remain the same but the proportions will vary.

<u>COLOR STABILITY:</u> Tests were conducted by putting one or more liquids representing each formulation in individual 1 cm diameter glass test tubes inside a glass window getting direct and indirect sunlight. They were checked for visible changes in color as compared with duplicates kept in the dark.

<u>POUR POINT:</u> The temperature below which the liquid will not pour. It will usually be plastic or glasslike below this temperature, and crystallization may occur. Since the pour point for a formulation may vary, we often pick the highest possible pour point and use a <"less than" symbol.

BOILING POINT: For a formulation there will often be a varying distillation range; in such cases we select the lowest possible boiling temperature and use a > "greater than" symbol.

FLASH POINT: May vary for a formulation so the lowest possible flash point and method is often used with a "greater than" symbol.

DENSITY: Typical Characteristics values are probably within 5% of an actual liquid.

VISCOSITY: Typical Characteristics values are probably within 10% of an actual liquid.

THERMAL CONDUCTIVITY, COEFFICIENT OF THERMAL EXPANSION, ELECTRIC STRENGTH, VOLUME RESISTIVITY, and DIELECTRIC CONSTANT: These are estimates.

SOLUBILITY: Under "soluble" or "best solvent", solvents are listed alphabetically. Within each Code or formulation, all liquids are miscible.

KNOWN INCOMPATIBILITY and COMPATIBILITY: Information in these categories comes from a variety of sources, including the experiences of customers. When a length of time of immersion (for example: 10 Month Immersion) is specified, this refers to testing done by Cargille in the following manner: a representative liquid of a formulation (usually made of equal parts of the formulation components) was used. One example of each of the solid materials to be tested for compatibility was immersed for the time indicated (at 25°C), then inspected to see if it had been dissolved, softened, swelled, weakened, pitted, or otherwise affected. Customers should do additional compatibility testing on their own material since it might have some important difference from the material of the same name tested by Cargille Laboratories.

<u>TOXICITY:</u> The terms High, Medium, Low, and None, have been used to summarize Cargille Laboratories' knowledge and experience with the liquid characterized. This should not be considered as a substitute for the more detailed information available in the MSDS (Material Safety Data Sheet).

SYMBOLS:

- ^ indicates an exponent (for example: 5^2=25)
- E is used for powers of 10 (for example: 3.67122E+12 means: 3.67122 times 10^12)
- 'C means degree Celcius (°C)
- n (W) means refractive index as a function of wavelength W

THE INFORMATION SUPPLIED IS BASED ON DATA AVAILABLE TO US AND IS BELIEVED TO BE CORRECT. NO GUARANTEE OR WARRANTY OF ANY KIND EXPRESSED OR IMPLIED IS MADE WITH RESPECT TO THE INFORMATION PRESENTED AND CARGILLE LABORATORIES ASSUMES NO RESPONSIBILITY FOR THE RESULTS OF THE USE OF THIS PRODUCT. THIS INFORMATION IS FURNISHED UPON THE CONDITION THAT THE PERSON RESPONSIBLE FOR ITS USE SHALL MAKE HIS OR HER OWN DETERMINATION OF THE SUITABILITY OF THE MATERIAL FOR HIS OR HER PARTICULAR PURPOSE.

Refractive Index Liquids

SPECIALITY OPTIGAL LIQUIDS

REFRACTIVE INDEX LIQUIDS

A COMPLETE SERIES OF SPECIFIC REFRACTIVE INDEX LIQUIDS

Cargille Refractive Index Liquids meet research and quality control needs in many fields including optics, chemical, forensics, and engineering by providing extensive optical data and physical characteristics information. These PCB-FREE liquids are ideal for calibration of refractometers, making temporary microscopic examinations of crystals and fibers for identification, and for optical coupling.

Refractive Index Liquids Include:

- STANDARD SERIES of 222 liquids in seven groups extending from 1.300 to 2.11 n_D.
- CERTIFIED LIQUIDS (3 series: AA, A, B) cover the refractive index range of most minerals, chemicals and biological materials (1.400 to 1.700 n_D) and are adjusted to an accuracy of ± 0.0002 ; available in intervals of 0.002 (full set), 0.004 (half set) or 0.01 (one fifth set).
- III HIGH DISPERSION LIQUIDS (series: B, E, M) include 64 liquids for double refractometry, focal masking and dispersion staining of microscopically examined fibers and crystals.
- REFRACTIVE INDEX MELTS Range is 2.12 to 2.31 n_D. Low melting solids.

STANDARD PARAMETERS

ng RANGE	n _D ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.300 to 2.31	1.300 to 1.395 ± 0.0002 1.400 to 1.700 ± 0.0002 1.705 to 1.800 ± 0.0005 1.810 to 2.11 ± 0.0015 2.12 to 2.31 ± 0.003	6563 Å (n _C) 1.300 to	1.300 to 1.800 2 to 50 cSt 1.810 to 2.11 .4 to 8500 cSt 2.12 to 2.31 8600 to flowable solid	25°C	AVAILABLE

REFRACTIVE INDEX LIQUIDS Cargille

RI-0987

CARGILLE REFRACTIVE INDEX LIQUIDS

Cargille Refractive Index (R.I.) Liquids / Optical Liquids have become standard tools in many laboratories as their applications have expanded from mineralogical identification. Broader as well as more specialized uses in many more fields such as chemicals, engineering, biology, forensic, optics and instrumentation are continuously developing. Special requirements for new applications have created a need for more technical data, new formulations, extended ranges, smaller increments and higher degrees of accuracy.

The largest and most comprehensive assemblage of refractive index liquids – over 250 stocked items - is available for Geo Sciences, Industry, Biology, Optics, Forensics and Education. Many more are custom formulated. Materials research is ongoing in anticipation of new requirements. Since 1942, Cargille Laboratories has developed new materials to meet these challenges.

Chlorofluorocarbon (CFCs) components if used in Cargille Refractive Index / Optical Liquids (Series AAA and Laser Liquid Code 3421) have physical properties that are harmless to the ozone layer, unlike those found in refrigerant gases, propellants and solvents, which are destructive. The components used by Cargille Laboratories have vapor densities ten times that of air, are relatively nonvolatile, and have boiling points at least 100 °C higher than the highest boiling CFC listed for removal from commercial use by the Montreal Protocol.

CLASSIFICATIONS

1.	*STANDARD REFRACTIVE INDEX LIQUIDS	Pg.2	2.	CUSTOM LIQUIDS	Pg.3
	A. REFRACIVE INDEX STANDARDS	Pg.2		A STANDARD IMMERSION LIQUIDS	Pg.3
	B. HIGH DISPERSION GROUP	Pg.3		B. IMMERSION LIQUID SPECIALS	Pg.3
		-		C. LASER LIQUIDS™	Pg.4

3.	FUSED SILICA & BK-7 GLASS MATCHING LIQUID	Pg.4
4.	MASTER CALIBRATION LIQUIDS	Pg.4
5.	MELTMOUNTS™ Mounting Media & Quick-Sticks	Pa.4
6.	OPTICAL GELS	Pg.4
7.	SOLID REFRACTIVE INDEX STANDARDS	Pg.4

^{*} Complete groups, partial sets, or individual refractive index liquids may be purchased. Request Price List if not included.

APPLICATIONS

PARTICLE IDENTIFICATION and OPTICAL ANALYSIS

Specimen fragments, minerals, ores, chemicals, plastics, gems, Identify translucent or transparent solids by microscopic Immersion techniques, such as Becke Line, dispersion/optical staining, focal masking and double variation refractometry techniques.

FIBER OPTICS

Liquids and Gels used for fiber optic connections and mode stripping.

MOUNTING MEDIA

Temporarily mount specimens in various index media for Matching or Contrasting index combinations. Mount specimens in stable, non-drying index of refraction liquid to permit sample rotation by shifting cover glass for more comprehensive examination. See Cargille MELTMOUNTS™ pg. 4

Telephone: (973) 239-6633

8:15AM - 4:45PM ET MON-THURS

8:00AM - 12:00PM ET FRI

Fax: (973) 239-6096 24-hours

CARGILLE LABORATORIES 55 Commerce Road Cedar Grove, NJ 07009-1289, USA

WWW.CARGILLE.COM

Calibrate refractometers and other optical instruments. REFRACTOMETRY See MASTER CALIBRATION LIQUIDS pg.4 EDUCATION Instruct and demonstrate principles and applications of refraction & optics STRAIN ANALYSIS Examine stress and strain effects on transparent or translucent items. molded, formed, curved or intrinsically shaped parts by polariscopic See Cargille IMMERSION LIQUIDS pg.3 immersion technique. Couple optical elements with liquids and gels formulated to reduce or OPTICAL COUPLING eliminate reflection losses. **OPTICAL LENSES** Fill hollow lens / prisms with index of refraction liquids and obtain unique optical / dispersion properties at lower cost than solid lens / prisms. **ELECTRO-OPTICS** Examine and preserve cathode coatings without stripping or re-immersion by utilizing liquids calibrated to match the index of crystals and glasses. POLLUTION Identify particles and particulates from air, water and soil. FLUID FLOW Photograph flow patterns by filling test system with refractive index liquids containing suspended "beads".

1. Standard Refractive Index Liquids Series AAA thru M & High Dispersion Series E are read at 3 wavelengths in order to calculate dispersion, and the liquids are blended so that the dispersion always falls into a consistent range. These liquids are quality-controlled for dispersion and index.

Refractive indices are stated for Refractive Index liquids at 25 °C, illuminated by 589.3 nms / 5893 angstroms Sodium light.

REFRACTIVE INDEX LIQUID STANDARDS: Range: 1.300 to 2.11
Consists of 222 liquids divided into seven different Series. The three Certified Series cover the range of most minerals, chemicals, glasses and practically all biological materials.

SERIES AAA Range 1,300 to 1.395 Int: 0.005 Adjusted to ±0.0002 Slightly volatile, colorless chlorofluorocarbon formulation. Keep tightly capped. SERIES AA (Certified) Range 1.400 1.458 to Int. 0.002 Adjusted to ±0.0002 Very stable, colorless SERIES A (Certified) Range 1.460 to 1.640 Int. 0.002 Adjusted to ±0.0002 Stable, colorless at the low end, increasing to faint yellow* at the high end. SERIES B (Certified) Range 1.642 1.700 Adjusted to ±0.0002 Int. 0.002 Stability inversely related to increasing index. Color increases with index to yellow or yellow brown*.

SERIES M Range 1.705 to 1.800 Int. 0.005 Adjusted to ±0.0005

Methylene iodide formulation, keep tightly capped. 1.740 to 1.780 liquids contain sulfur imparting yellow color*. 1.785 to 1.800 liquids have tin iodide added, dark red color* As methylene iodide evaporates, 1.705 to 1.735 liquids decrease in index. 1.740 liquids and up increase in index and may form crystals.

Telephone: (973) 239-6633

8:15AM - 4:45PM ET MON-THURS

8:00AM - 12:00PM ET FRI

Fax: (973) 239-6096 24-hours

WWW.CARGILLE.COM

CARGILLE LABORATORIES 55 Commerce Road Cedar Grove, NJ 07009-1289, USA

^{*} Color refers to appearance in bulk. All optical liquids are virtually colorless in thin layer.

These Liquids have been discontinued and we have limited stock available. Please call to check availability.

SERIES H Range 1.81 to 2.00 Int. 0.01 Adjusted to ± 0.0015 Quite stable. Color varies from yellow to brown*. Toxic and corrosive. A super-saturated solution. May crystallize with time and low temperature. Formulation: arsenic tribromide, arsenic disulfide and sulfur.

SERIES EH Range 2.01 to 2.11 Int. 0.01 Adjusted to ± 0.0015

Quite stable. Similar to Series H but contains selenium. Toxic and corrosive. Darker color*, more viscous. Viscosity increases with index.

HIGH DISPERSION GROUP Range: 1.500 to 1.800:

Consists of 64 liquids (three combined Series). Use for dispersion/optical staining, focal masking and double variation refractometry. Series E is specially formulated for high dispersion. Series B-1/2 and M are from the Standard group and have suitable dispersion characteristics.

SERIES E Range 1.500 to 1.640 Int. 0.05 Adjusted to ±0.0005 Slightly volatile, keep tightly capped. Supplied with optical constants for F, D and C lines. Recommended by prominent microscopists who have developed and published these techniques.

SERIES B-1/2 Range 1.644 to 1.700 Int. 0.004 Adjusted to ±0.0002 Represents one-half of the B Series in the Standard group. Has high dispersion characteristics.

SERIES M Range 1.705 to 1.800 Int. 0.005 Adjusted to ±0.0005 The same Series M as in the Standard group. Has high dispersion characteristics.

 Standard Immersion Liquids, Immersion Liquid Specials & Laser Liquids™ are calibrated according to the customers' requirements, usually reading the index at 1 wavelength. These liquids are quality-controlled only for the customer-specified properties. If requested, typical dispersion data can be provided.

A. STANDARD IMMERSION LIQUIDS

Formulations similar to Standard Refractive Index Liquids, but less expensive; custom blended to a desired index between 1.400 and 1.700 at desired temperature and wavelength.

Consult Technical Department

B. IMMERSION LIQUID SPECIALS

Custom blended formulations with properties that differ from Standard Immersion Liquids, making them preferable for certain specific applications

Consult Technical Department

C. LASER LIQUIDS™

Originally formulated for use with lasers, the use of these liquids has expanded to many optical applications for indices between 1.293 and 1.630 where maximum stability, inertness, transparency, and low toxicity are required.

Consult Technical Department

3. FUSED SILICA and BK-7 GLASS MATCHING LIQUID

Liquids match the refractive index of fused silica or BK-7 Glass at 632.8 nms and closely match it at other wavelengths.

Request Fused Silica Matching Liquid Code 50350 Typical Characteristics Request BK-7 Matching Liquid Code 81520 Typical Characteristics

Telephone: (973) 239-6633

8:15AM - 4:45PM ET MON-THURS

8:00AM - 12:00PM ET FRI

Fax: (973) 239-6096 24-hours

WWW.CARGILLE.COM

CARGILLE LABORATORIES
55 Commerce Road
Cedar Grove, NJ 07009-1289, USA

4. MASTER CALIBRATION LIQUIDS

Cargille Master Calibration Liquids are very stable, non-toxic liquids with refractive index measured to an accuracy of ±0.00005 (five-in-the-fifth-place) at various temperatures and wavelengths. NOTE: To make use of the unusually high accuracy of these refractive index measurements, the user will require knowledge of the working temperature to an accuracy of ± 0.02 °C or better. This is because liquids typically have a temperature co-efficient of -0.0004 refractive index units per 1 °C, so they will be affected by approximately 0.000008 (eight-in-the-sixth-place) refractive index units for each 0.02 °C difference in temperature. All measurements are NIST (formerly the National Bureau of Standards) traceable.

Consult Technical Department

MELTMOUNTS™ MOUNTING MEDIA

Low melting (65 °C) thermo-plastic, indices 1.539, 1.582, 1.605, 1.662 (PCB-FREE replacement for Aroclor 5442), 1.680, and 1.704. Useful as a thermally reversible cement for making microscope slides and in other optical coupling applications. Request Data Sheet for MELTMOUNTS™

OPTICAL GELS

Refractive indices of 1.46 and 1.52 for lens and fiber coupling and mode striping.

- **Z.** SOLID REFRACTIVE INDEX STANDARDS supplied in a solid wood case. Sets of 58+ vials of powdered minerals and glasses -100 +200 mesh. Range: 1.34 to 2.40, most intervals near 0.01.
 - M-1 <u>REFRACTIVE INDEX STANDARDS</u>: ½ cc each of 60 optical glasses & minerals, refractive indices 1.34 to 2.40, 0.01 increments, R.I. value ± 0.01@ n_D
 - M-7 <u>PRECISION SOLID REFRACTIVE INDEX STANDARDS</u>: ½ cc each of 58 Precision Optical Glasses, R.I. 1.34 to 2.40, 0.01 increments: set is accompanied by extensive technical data. R.I. values: ± 0.00005 in most instances @ 7 wavelengths.

Consult Technical Department

Catalog #	<u>ACCESSORIES</u>
18505	REPRINT: "PRACTICAL REFRACTOMETRY BY MEANS OF THE MICROSCOPE", by Dr. Roy M. Allen. 48-page booklet describes basic methods; with 13 photomicrographs.
18501	RACK Model RF-1. Solid wood with transparent rigid plastic cover. Contains four stepped rows for easily identifying R.I. numbers on labels. Each rack holds 51 x 7.4 cc bottles.

ORDERING INFORMATION FOR STANDARD REFRACTIVE INDEX LIQUIDS

All Refractive Index Liquid Standards Sets are sold in 7.4 cc ($\frac{1}{4}$ fl.oz.) in amber bottles with applicator caps.

Temperature co-efficients and dispersion values are printed on each label.

Liquids are standardized for the sodium (n_D) line 589.3 nms / 5893 angstroms at 25 °C.

If any ½ sets have been ordered, the alternate half can be ordered to obtain a complete set.

Individual Refractive Index Liquid Standards come in 7.4 cc (1/4 oz.) and 30 cc (1 oz.) amber bottles with applicator caps.

SEE PRICE LIST AND SALES POLICY FOR COMPLETE ORDERING INFORMATION

Telephone: (973) 239-6633

8:15AM - 4:45PM ET MON-THURS

8:00AM - 12:00PM ET FRI

Fax: (973) 239-6096 24-hours

WWW.CARGILLE.COM

CARGILLE LABORATORIES 55 Commerce Road Cedar Grove, NJ 07009-1289, USA Replaces: RI-PL-196 Effective: January 15, 2021

CARGILLE REFRACTIVE INDEX LIQUIDS PRICE LIST

Refractive Index values stated are standardized at 589.3 nm and 25 °C

COMBINED SETS - CERT	IFIED SERIES AA. A. & B	RANGE 1.400 - 1.700	
Cat. No. 18001RF-1			
	Half Set Intl 1.402 - 1.698 Intl		
	Fifth Set Intl		
70000 14 170	That out	υ.υ	7 11.00
CARGILLE ST	ANDARD GROUP:	<u> 1.300 – 2.11</u>	
Cat. No. SERIES AAA Range	1.300 - 1.395 Adjustmer	nt ±0.0002	
18031 AAA-1	Full Set Intl	0.005 20 lig \$	566.75
18032 (1.300) AAA-1/2	Half Set Intl	0.01 10 liq \$	307.25
1803X AAA-x			45.50
1803Y AAA-xx	1 fl. oz (30 cc)	Any liq selected \$	134.25
Cat. No. SERIES AA Range	1.400 - 1.458 Adjustmer	nt ±0.0002	
18061 AA-1			540.75
18062 (1.400) AA-1/2			294.75
18065 (1.400) AA-1/5			122.50
1806X AA-x	(std) 1/4 fl. oz (7 cc)	Any liq selected \$	29.25
1806Y AA-xx	1 fl. oz (30 cc)	Any liq selected \$	85.50
Cat. No. SERIES A Range	1.460 - 1.640 Adjustmen	nt ±0.0002	
18091 A-1	Full Set Intl	0.002 91 liq \$	1,628.00
18091 A-1 18092 (1.460) A-1/2	Full Set Intl	0.002 91 liq \$ 0.004 46 liq \$	890.00
18091 A-1 18092 (1.460) A-1/2 18095 (1.460) A-1/5	Full Set Intl Half Set Intl Fifth Set Intl	0.002	890.00 360.50
18091 A-1 18092 (1.460) A-1/2 18095 (1.460) A-1/5 1809X A-x	Full Set Intl Half Set Intl Fifth Set Intl (std) 1/4 fl. oz (7 cc)	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$	890.00 360.50 30.75
18091 A-1 18092 (1.460) A-1/2 18095 (1.460) A-1/5	Full Set Intl Half Set Intl Fifth Set Intl (std) 1/4 fl. oz (7 cc)	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$	890.00 360.50
18091 A-1	Full Set Intl Half Set Intl Fifth Set Intl (std) 1/4 fl. oz (7 cc)	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$ Any liq selected \$	890.00 360.50 30.75
18091	Full Set Intl Half Set Intl Fifth Set Intl (std) 1/4 fl. oz (7 cc) 1 fl. oz (30 cc) 1.642 - 1.700 Adjustment Full Set Intl	0.002	890.00 360.50 30.75
18091 A-1	Full Set Intl Half Set Intl Fifth Set Intl (std) 1/4 fl. oz (7 cc) 1 fl. oz (30 cc) 1.642 - 1.700 Adjustment Full Set Intl Half Set Intl	0.002	890.00 360.50 30.75 88.00
18091	Full Set	0.002	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75
18091	Full Set	0.002	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75 63.75
18091	Full Set	0.002	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75
18091 A-1 18092 (1.460) A-1/2 18095 (1.460) A-1/5 1809X A-x 1809Y A-xx Cat. No. SERIES B Range 18121 B-1 18122 (1.644) B-1/2 18125 (1.650) B-1/5 1812X B-x 1812Y B-xx	Full Set	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$ Any liq selected \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75 63.75
18091	Full Set	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$ Any liq selected \$ \$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75 63.75 189.25
18091	Full Set	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$ Any liq selected \$ \$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75 63.75 189.25
18091	Full Set	0.002 91 liq \$ 0.004 46 liq \$ 0.01 19 liq \$ Any liq selected \$ Any liq selected \$ \$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$	890.00 360.50 30.75 88.00 1,115.00 629.50 249.75 63.75 189.25

FOB & SHIPPING POINT: CEDAR GROVE, NJ 07009 – USA
MINIMUM ORDER – USA, CANADA, MEXICO: \$ 50.00 → INTERNATIONAL: \$ 70.00
SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CARGILLE LABORATORIES

55 Commerce Road • Cedar Grove NJ 07009-1289 • USA
Ph: (973) 239-6633 8:15 AM - 4:45PM M-Th 8:00 AM - 12:00 PM Fri. ET
FAX: (973) 239-6096 • WWW.CARGILLE.COM

Replaces: RI-PL-196 Effective: January 15, 2021

CARGILLE REFRACTIVE INDEX LIQUIDS PRICE LIST

CARGILLE HIGH DISPERSION GROUP

The Cargille High Dispersion Series are used when doing dispersion staining for identification of asbestos. Please note that Series A will not produce the colors needed in dispersion staining work for identifying asbestos. The Series E liquids were developed especially for this work and will produce the right colors.

Cat. No. SERIES E Range 1.500 - 1.640 Adjustment ±0.0005	
18431 E-1 Full Set Intl 0.005 29 liq 3 18432 (1.500) E-1/2 Half Set Intl 0.01 15 liq 3 1843X E-x (std) 1/4 fl. oz (7 cc) Any liq selected 3 1843Y E-xx 1 fl. oz (30 cc) Any liq selected 3	584.25 61.00
Cat. No. SERIES B Range 1.642 - 1.700 Adjustment ±0.0002 18122 B-1/2 Half Set Intl 0.004 15 liq \$ 18125 B-1/5 Fifth Set Intl 0.01 6 liq \$	629.50 629.75
Cat. No. SERIES M Range 1.705 - 1.800 Adjustment ±0.0005 18151 M-1 Full Set Intl 0.005 20 liq \$ 18152 M-1/2 Half Set Intl 0.01 10 liq \$	749.00 417.00

COMBINED SETS - HIGH DISPERSION SERIES E. B. & M RANGE 1.500 - 1.800

Cat. No.	18461HD-1 Full Set	Consists of E-1, B-1/2, & M-1	64 liq \$ 2,061.75
	18462 HD-1/2 Half Set	Consists of E-1/2, B-1/5, & M-1/2	31 liq \$ 1,134.25

OB & SHIPPING POINT: CEDAR GROVE, NJ 07009 - USA
MINIMUM ORDER - USA, CANADA, MEXICO: \$ 50.00 → INTERNATIONAL: \$ 70.00
SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CARGILLE LABORATORIES

RI-PL-197-DIST Replaces: RI-PL-196

Effective: January 15, 2021

CARGILLE REFRACTIVE INDEX LIQUIDS PRICE LIST

CARGILLE MASTER CALIBRATION LIQUIDS

See MASTER CALIBRATION LIQUIDS PRICE SHEET: RI-MCL-PL

CARGILLE OPTICAL COUPLING LIQUIDS

Cat. No. 16xxx	See IMMERSION OIL DATA SHEET: IO-DS
Cat. No. 241xx	MELTMOUNT™ Mounting Media - available in 1 oz. (30 cc) jars and convenient QUICK-STICKS™
	Refer to DATA SHEET: RI-MOM-MM

CARGILLE REFRACTIVE INDEX SOLIDS

Cat. No. 34100	SET M-1: Solid Refractive Index Standards, ½ cc each of 60 optical glasses & minerals -100 +200 mesh, refractive indices 1.34 to 2.40: 0.01 increments; includes wood case. (LONG TERM OUT OF STOCK) See REFERENCE SETS DATA SHEET
Cat. No. 34200	SET M-7: Precision Optical Glasses, with extensive technical data. (LONG TERM OUT OF STOCK) See DATA SHEET: RS-M7
Cat. No. 34224 NEW - Replacing M-25 Contact us for details!	SET M-24: NVLAP Recognized Means of Verification of Refractive Index Liquids. (Sub-set of M-7) See DATA SHEET: RI-NVLAP

CARGILLE REFRACTIVE INDEX ACCESSORIES

Cat. No. 18501	Rack: Model RF-1 Holds 52, ¼ oz. Stds.	\$	121.75	/ea
	(3 racks hold one RF-1 set)			
	Booklet "PRACTICAL REFRACTOMETRY	_	2.05	
Cat. No. 18505	BY MEANS OF THE MICROSCOPE "	\$	6.25	/ea
	by Dr. Roy M. Allen			

FOB & SHIPPING POINT: CEDAR GROVE, NJ 07009 – USA
MINIMUM ORDER – USA, CANADA, MEXICO: \$ 50.00 → INTERNATIONAL: \$ 70.00
SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CARGILLE LABORATORIES

55 Commerce Road • Cedar Grove NJ 07009-1289 • USA
Ph: (973) 239-6633 8:15 AM - 4:45PM M-Th 8:00 AM - 12:00 PM Fri. ET
FAX: (973) 239-6096 • WWW.CARGILLE.COM

Replaces: RI-BXCW-PL-196 Effective Date: Jan. 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

0.000% BRIX STANDARD

REFRACTIVE INDEX CERTIFIED WATER *

0.000% Brix at any temperature (15 - 35 °C)

NIST/ASME uses as the authority for the properties of water, the publication issued by IAPWS, (The International Association for the Properties of Water and Steam). The IAPWS has published the "absolute" refractive index of water, that is relative to a vacuum. We have calculated its refractive index, relative to air, by dividing the absolute refractive index of water by the absolute refractive index of air. (References available).

ACS Reagent Grade Water was measured for refractive index at 589.3 nm on an Abbe type refractometer standardized with NIST traceable standards.

Temperature	Absolute Refractive Index of	Refractive Index of	Refractive Index of	Brix Equivalent
Degrees Celsius	Water ± 0.00005 at 589.3 nm,	Water relative to air	Water (RGW) read	as per ICUMSA
± 0.01	ASME Steam v2.2:	at 589.3 nm,	by Cargille ±	2000:
		calculated values:	0.00005 RI Units at	
			589.3 nm 23°C,	
			relative to air, calculated values:	
			calculated values.	
20	1.33334	1.33297	1.33297	0.000
25	1.33285	1.33249	1.33249	0.000
30	1.33228	1.33193	1.33193	0.000

^{*}Note: Refractive Index of water at 589.3 nm ± 0.00005 is equivalent to ± 0.000% Brix ± 0.035

Catalog # 19400

1 x 1/4 fl. oz.	12 x 1/4 fl. oz	1 x 1 fl. oz.	12 x 1 fl. oz
\$89.75	\$ 81.00	\$ 230.00	\$ 208.75

LETTER OF CERTIFICATION ACCOMPANIES EACH BOTTLE

Replaces: RI-MCL-BRIX-TB-196 Effective Date: Jan. 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

CARGILLE MASTER CALIBRATION LIQUIDS WITH EQUIVALENT % BRIX (SUCROSE) - ICUMSA 2000

Cargille Master Calibration Liquids are very stable, non-toxic liquids with refractive index measured to an accuracy of \pm 0.00005 at various temperatures and wavelengths. The unusually high accuracy of these refractive index measurements will often require that the user knows his or her working temperature with an accuracy of \pm 0.02°C or better; this is because liquids typically have a temperature coefficient of -0.0004 refractive index units per 1°C so they will be affected by approximately 0.000008 refractive index units for each 0.02°C difference in temperature

When the Master Calibration Liquid has a refractive index measurement at two temperatures, 20°C or less apart, the user can compute a temperature coefficient and calculate (interpolate) refractive index at any temperature in between with an accuracy of at least \pm 0.00006 (the relationship of refractive index to temperature is linear). Typical temperature coefficients (accurate to \pm 10%) are available from Cargille Laboratories and can in practice be used to correct for up to a known temperature change of 0.20°C from the temperature of calibration. All measurements are NIST (NBS) traceable. All measurements available are listed here. n = refractive index

Cat. No. 19251-BXS	Code 3421	Nominal nD = 1.362
(n = 1.36176 at 20 °	C at 589.3 nm)	(18.742 % BRIX ±0.030 at 20 °C)
Cat. No. 19253-BXS	Code S50	Nominal nD = 1.404
(n = 1.40427 at 20 °	°C at 589.3 nm)	(42.247 % BRIX ±0.025 at 20 °C)
Cat. No. 19257-BXS	Code 06	Nominal nD = 1.459
(n = 1.45932 at 20 °	°C at 589.3 nm)	(67.461 % BRIX ±0.021 at 20 °C)
Cat. No. 19259-BXS	Code 1160	Nominal nD = 1.490
(n = 1.48989 at 20 °	C at 589.3 nm)	(79.687 % BRIX ±0.019 at 20 °C)

NOTE: Prices of multiples (12x) must be for the same Cargille Master Calibration Liquid

RI-MCL-PL-197

Replaces: RI-MCL-PL-196 Effective: January 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

CARGILLE MASTER CALIBRATION LIQUIDS

Cargille Master Calibration Liquids are very stable, non-toxic liquids with refractive index measured to an accuracy of + 0.00005 at various temperatures and wavelengths. The unusually high accuracy of these refractive index measurements will often require that the user knows his or her working temperature with an accuracy of + 0.02 °C or better; this is because liquids typically have a temperature coefficient of - 0.0004 refractive index units per 1 °C so they will be affected by approximately 0.000008 refractive index units for each 0.02 °C difference in temperature.

When the Master Calibration Liquid has refractive index measurements at two temperatures, 20 $^{\circ}$ C or less apart, the user can compute a temperature coefficient and calculate (interpolate) refractive index at any in between temperature with an accuracy of at least \pm 0.00006 (the relationship of refractive index to temperature is nearly linear). Typical temperature coefficients (accurate to \pm 10%) are available from Cargille Laboratories and can in practice be used to correct for up to a known temperature change of 0.20 $^{\circ}$ C from temperature of calibration. All measurements are NIST (NBS) traceable. All measurements available are listed here.

Cat. No.	Master Calibration Liquids	Nominal	Temperature
19252	Code S50	nD=1.402	@25°C
19253	Code S50	nD=1.404	@20°C
19255	Code 06	nD=1.457	@25°C
19257	Code 06	nD=1.459	@20°C
19259	Code 1160	nD=1.490	@20°C
19261	Code 1160	nD=1.514	@25°C
19264	Code 1057	nD=1.572	@25°C
19268	Code 63	nD=1.630	@25°C
19300	Code S1050	nD=1.436	@30°C
*19340	Code 1160	nD=1.516	@20°C (Multi-Temp)

^{* ±0.0001}

1 x ¼ fl. oz.	12 x ¼ fl. oz.	1 x 1 fl. oz.	12 x 1 fl. oz.
\$89.75	\$81.00	\$ 230.00	\$ 208.75 ea.

Note: Prices of multiples (12x) must be for the same Cargille Master Calibration Liquid.

CARGILLE MASTER CALIBRATION LIQUIDS

Cat. No.	Code	Nominal	Actual Reading	Lot#
19252	S50	nD = 1.402	(1.40235 at 25 °C at 589.3 nm)	072681
19253	S50	nD = 1.404	(1.40427 at 20 °C at 589.3 nm)	082581
19255	06	nD = 1.457	(1.45746 at 25 °C at 589.3 nm)	121681
19257	06	nD = 1.459	(1.45932 at 20 °C at 589.3 nm)	120981
19259	1160	nD = 1.490	(1.48989 at 20 °C at 589.3 nm)	072176
19261	1160	nD = 1.514	(1.51432 at 25 °C at 589.3 nm)	100977
19264	1057	nD = 1.572	(1.57230 at 25 °C at 589.3 nm)	030374
19268	63	nD = 1.630	(1.63026 at 25 °C at 589.3 nm)	070395
19300	S1050	nD = 1.436	(1.43604 at 30 °C at 589.3 nm)	022772
19340	1160	nD = 1.516	*(1.5163 at 20 °C at 589.3 nm)	051582
			· · · · · · · · · · · · · · · · · · ·	

^{* ±0.0001}

FOB & SHIPPING POINT: CEDAR GROVE, NJ 07009 – USA

MINIMUM ORDER – USA, CANADA, MEXICO: \$ 50.00 → INTERNATIONAL: \$ 70.00

SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CARGILLE LABORATORIES

55 Commerce Road • Cedar Grove NJ 07009-1289 • USA
Ph: (973) 239-6633 8:15 AM - 4:45PM M-Th 8:00 AM - 12:00 PM Fri. ET
FAX: (973) 239-6096 • WWW.CARGILLE.COM

55 Commerce Road • Cedar Grove • New Jersey • 07009 – 1289 USA Ph: 973-239-6633 • Fax: 973-239-6096 • • www.CARGILLE.COM

> Precaution Sheet RI-SS-PS-1186

REFRACTIVE INDEX LIQUIDS STANDARD SERIES

SAFETY AND HANDLING

SERIES AAA, AA, A, B, M – These series have low toxicity; however, good laboratory procedures should be observed. Series AAA and M are slightly volatile and should be kept well stoppered. Series B and M should be protected from light as they darken slowly from exposure to lightl

SERIES H, EH FH* GH* Note* FH and GH are not currently for sale.

- Cargille High Series and Extra High Series Refraction Index Liquids and FH and GH Series Melts contain arsenic tribromide which is <u>toxic</u> and <u>corrosive</u>.
- Personnel handling these materials should avoid contact and breathing of vapors. Any material on the body should be immediately removed by thorough scrubbing. Persons with any allergenic history should be extremely careful to avoid contact.

NOTE: Arsenic can be absorbed through intact skin.

- The greatest danger of arsenic poisoning is from ingestion. The possibility of accidental ingestion is greatly reduced by preventing eating and smoking in areas where these liquids are used.
- 4. Since these materials are corrosive, it is recommended that slides be prepared away from the microscope and mounted specimens left on the microscope no longer than necessary. Direct contact with instruments will attack metal parts and leaded optical glasses.
- 5. These materials also react with moisture in the air. Therefore, mountings should be made quickly so the liquid is protected from the atmosphere by the cover glass, and caps should be tightened on bottles to prevent escape of vapors and avoid moisture-vapor reactions.

Immersion Liquids

SPECIALTY OPTICAL LIQUIDS

IMMERSION LIQUIDS

FOR SUBMERSION EXAMINATION OF SOLIDS

Immersion Liquids permit detection of imperfection in transparent and translucent materials and examination for stress and strain effects in molded, formed, curved or intrinsically shaped parts by polariscopic immersion technique.

Immersion Liquids are:

- CUSTOM BLENDED to specific refractive index.
- REUSABLE.
- INEXPENSIVE.
- LOW IN TOXICITY.
- AVAILABLE with n_D between 1.293 and 1.700.

STANDARD PARAMETERS

n _D RANGE	n _D ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.293 to 1.700	±.0005	5893 Ā	3 to 47	25°C	AVAILABLE

Replaces: RI-IL-T-196 Effective: Jan. 15, 2021

CARGILLE IMMERSION LIQUIDS TYPICAL VALUES FOR A FEW REPRESENTATIVE LIQUIDS

TECHNICAL BULLETIN RI-IL-T-197 Page 1 of 2

Representative Liquid / Catalog Number		19501	19503	19505	19507		
Formula Code		S1050		5040			
Refractive Index Range possible for 25 °C)	Code (n _D	1.400 – 1.458			1.459 – 1.570		
REFRACTIVE INDEX @ 25 °C and PERCENT TRANSMITTANCE	2900	1.433 78%	1.461 80%	1.499 84%	0%	_ 0%	- 0%
1 cm at a Few Wavelengths (nm)	365 i	1.418 100%	1.444 99%	1.478 99%	1.500 51%	1.531 20%	1.576 5%
	404.7 h	1.4127 99%	1.4382 99%	1.4719 99%	1.4920 85%	1.5214 69%	1.5625 51%
Calibrated at	486.1 F	1.4054 100%	1.4306 100%	1.4637 99%	1.4819 98%	1.5086 95%	1.5460 92%
$nD^{25} \pm 0.0005$	589.3 D	1.4000 100%	1.4250 100%	1.4580 100%	1.4750 99%	1.5000 99%	1.5350 98%
	656.3 C	1.3977 100%	1.4227 100%	1.4557 100%	1.4722 100%	1.4966 100%	1.5307 100%
	1064.8	1.392 98%	1.417 97%	1.450 95%	1.465 95%	1.488 96%	1.520 97%
	1300	1.390 96%	1.415 92%	1.449 88%	1.464 88%	1.487 89%	1.518 90%
	1550	1.390 63%	1.415 70%	1.448 81%	1.463 82%	1.486 82%	1.517 84%
Abbe v: (n _D – 1) / (n _F -n _C)		52	54	57	49	42	35
Temp. Coef. dn _D /dt (°C) 15-35 °C		000412	000402	000388	000393	000401	000411
Viscosity cSt @ 25 °C		10	13	17	22	31	50
Density g / cc @ 25 °C		0.930	0.887	0.831	0.855	0.894 > 138	0.948
Flash Point °C		> 138		> 136 <- 7			
Pour Point °C		< - 7			> 262		
Boiling Point °C Toxicity (request MSDS)	100 100 100 100 100 100 100 100 100 100	> 200 low			low		
Compatible (c) Incompatible (i)	51.0		1000			1044	
Acrylic			С			С	
Polycarbonate		C			С		
Polyethylene		C			С		
Polypropylene			С		С		
Polystyrene			С		i		
Latex Rubber			i		i		
Neoprene Rubber			C		i		
Silicone Rubber						i some	
Aluminum			С			С	
Copper			С			C	
Steel Best Solvents		c C Ethyl Ether, Naphtha, Xylene, Toluene, Heptane, Methylene Chloride,					
Color Stability in sun		Turpentine v. high			Moderate		
	4 fl. oz.	\$122.50	\$120.75	\$118.25		\$127.25	
PRICE:	16 fl. oz.	\$253.75	\$247.25	\$226.25		\$235.25	
2019	32 fl. oz.	\$410.50	\$401.50	\$335.50	35	\$352.50	
(Subject: to Change) Note:		Like Series Colorless	AA but at le	ower cost.		A but at lower dispersion.	

Effective: Jan. 15, 2021 Replaces: RI-IL-T-196

CARGILLE IMMERSION LIQUIDS TYPICAL VALUES FOR A FEW REPRESENTATIVE LIQUIDS

TECHNICAL BULLETIN RI-IL-T-197 Page 2 of 2

Depresentative Lieuid / Catal	. Ni verile e e	A FEW REFRESENTATIVE LIQUIDS				Page 2 01 2		
Representative Liquid / Catalog Number		19507 (continued)	19531	19533	19535	19519	19525	
Formula Code		5040		40BN		В	NDN	
Refractive Index Range possible 25 °C)	for Code (n _D	1.459-1.570		1.571-1.65	6	1.65	7-1.698	
REFRACTIVE INDEX @ 25 °C	290	_	_	_	/ (1000)	_	_	
and PERCENTTRANSMITTANCE		0%	0%	0%	0%	0%	0%	
1 cm at a Few Wavelengths (nm)	365 i	1.620 1%	1.666 4%	1.711 10%	1.750 25%	1.774 3%	1.807 0%	
, , , , , , , , , , , , , , , , , , , ,	404.7 h	1.6036 38%	1.6437 43%	1.6832 50%	1.7175 57%	1.7401 9%	1.7689 1%	
	486.1 F	1.5833 89%	1.6170 88%	1.6504 88%	1.6794 87%	1.7000 55%	1.7249 33%	
Calibrated at	589.3 D	1.5700 98%	1.6000 98%	1.6300 98%	1.6560 98%	1.6750 96%	1.6980 94%	
$n_D^{25} \pm 0.0005$	656.3 C	1.5648 100%	1.5936 99%	1.6224 98%	1.6473 98%	1.6657 98%	1.6880 97%	
	1064.8	1.552 97%	1.578 98%	1.605 99%	1.628 99%	1.644 99%	1.665 99%	
	1300	1.550 90%	1.576 92%	1.602 94%	1.624 95%	1.640 96%	1.661 98%	
	1550	1.549 85%	1.574 88%	1.600 90%	1.622 93%	1.638 93%	1.659 93%	
Abbe v: $(n_D - 1)/(n_{F-n_C})$		31	26	22	20	20	19	
Temp. Coef. dn _D /dt (°C) 15-35 °C	C	000421	000438	000454	000468	000474	000479	
Viscosity cSt @ 25 °C		82	29	10	4	4	4	
Density g / cc @ 25 °C		1.003	1.172	1.334	1.475	1.595	1.718	
Flash Point °C		>138	> 113			> 93		
Pour Point °C Boiling Point °C		< - 7 > 262	< 6 > 279			< 6 > 279		
Tovicity (no supply MCDC)		1-		1				
Toxicity (request MSDS) Compatible (c) Incompatible (i)		low		moderate		mod	erate	
Acrylic		С	1			T .		
Polycarbonate		C		i			Ci	
Polyethylene		C		C		C		
Polypropylene		С	C			+	3	
Polystyrene		i		i			i	
Latex Rubber		i		i			i	
Neoprene Rubber		i		i			i	
Silicone Rubber		i some		С		(3	
Aluminum		С		С		(3	
Copper		С		i	10 10 10 10 10 10 10 10 10 10 10 10 10 1		i	
Steel Best Solvents	*	C See page 1:				e, Methylene (i Chloride	
Color Stability in sun		5040 moderate		eptane, , Turp		lo	w	
	/ fl ==							
PRICE:	4 fl. oz. 16 fl. oz.	\$127.25 \$235.25	\$131.75 \$277.00	\$154.50	\$184.50 \$447.00	\$437.00	\$571.25	
2019	32 fl. oz.	\$352.50	\$450.50	\$346.00 \$576.50	\$735.50	\$1,357.25 \$2,545.00	\$2,037.75 \$3,881.00	
(Subject: to Change) Note:	JZ 11. UZ.	See Page 1:	Like Series A	& B of the same		Like Series B b	ut lower cost.	
na = not available	O JI	5040	at lower cost. I	Light Yellow		Yellow brown c sensitive.	olor. Light	

CARGILLE IMMERSION LIQUID SPECIALS TYPICAL VALUES FOR A FEW REPRESENTATIVE LIQUIDS

Replaces: RI-ILS-T-196 TYPICAL VALUES
Effective: Jan. 15, 2021 A FEW REPRESENTATIVE

TECHNICAL BULLETIN RI-ILS-T-197 Page 1 of 2

Catalog #	19568	19573	19570		19561	
	4550 *	4501	50350 *	1160		
possible	1.452-1.457	1.452-1.470	1.458-1.475	1.482-1.538		3
for Code (n _D 25 °C) REFRACTIVE INDEX @ 25 °C and PERCENT		0%	1.518 72%	0%	0%	0%
365 i	1.471 99%	1.500 53%	1.496 99%	1.512	1.535	1.584 87%
404.7 h	1.4655 99%	1.4902 96%	1.4894 100%	1.5025 97%	1.5237 96%	1.5686 95%
486.1 F	1.4576 100%	1.4779 100%	1.4809 100%	1.4902 99%	1.5094 99%	1.5501 99%
589.3 D	1.4520 100%	1.4700 100%	1.4750 100%	1.4820 100%	1.5000 100%	1.5380 100%
656.3 C	1.4497 100%	1.4670 100%	1.4726 100%	1.4788 100%	1.4963 100%	1.5333 100%
1064.8	1.444 95%	1.460 95%	1.467 95%	1.471 96%	1.487 96%	1.522 97%
1300	1.442 89%	1.459 85%	1.466 96%	1.469 91%	1.486 92%	1.520 94%
1550	1.442 84%	1.458 84%	1.465 81%	1.468 83%	1.485 85%	1.519 89%
	100000			42	38	32
5-35 °C			000360	000385	000389	000396
						41
			0.867	0.969	1.016	1.115
			> 138		> 199	
			< -7		< - 45	
			> 262		> 370	
	none	moderate	none	15-16-	low	
ble(i)						
					С	
				-		
				-		
					C	
	i		i	-		×
r	·		,			
	С					
	C	na				
	С	na	С			
Steel est Solvents		ohtha, Xylene, Mo le, Heptane, Tui	ethylene rpentine	Ethanol, Acetone, Ethyl Ether, Naphtha, Xylene, Methylene		
	v. high	moderate	v. high		high	
	\$125.75	\$111.25	\$123.00		\$123.75	
	\$233.00	\$209.75	\$227.25		\$240.25	
32 fl. oz.	\$353.50	\$340.00	\$365.00		\$386.00	
		v. low viscosity; a bit	Colorless and v. stable	Low fluorescence; very stable; colorless (less yellow than 5040).		
	possible 290 365 i 404.7 h 486.1 F 589.3 D 656.3 C 1064.8	4550 * possible 1.452-1.457 290 1.489 86% 365 i 1.471 99% 404.7 h 1.4655 99% 486.1 F 1.4576 100% 589.3 D 1.4520 100% 656.3 C 1.4497 100% 1064.8 1.444 95% 1300 1.442 84% c) 57 5-35 °C 000394 11 0.816 > 135 < 2	1.450 * 4501	possible 1.452-1.457 1.452-1.470 1.458-1.475 290 1.489 86% - 1.518 72% 365 i 1.471 99% 1.500 99% 1.496 99% 404.7 h 1.99% 96% 100% 100% 486.1 F 1.4576 1.4779 100% 1.4809 100% 100% 589.3 D 1.4520 1.4700 100% 1.4750 100% 100% 656.3 C 1.4497 1.4670 100% 1.00% 100% 1064.8 1.444 95% 95% 95% 95% 95% 95% 95% 1300 1.442 1.459 89% 85% 96% 1.466 89% 85% 96% 1550 1.442 1.458 1.465 84% 84% 84% 81% 81% 81% c) 57 43 58 58 5-35 °C 000394000488000360 11 0.4 112 0.816 0.840 0.867 > 135 > 47 > 138 < 2 < 2 < 2	Dossible	Possible

CARGILLE IMMERSION LIQUID SPECIALS TYPICAL VALUES FOR

Replaces: RI-ILS-T-196 Effective: Jan. 15, 2021 A FEW REPRESENTATIVE LIQUIDS TECHNICAL BULLETIN RI-ILS-T-197 Page 2 of 2

Representative Liquid / Catalog #		19582		19563		19581
Formula Code		50BN *		5095		OHZB *
possible for	1.459-1.656		1.458-1.580		1.333-1.470	1.333-1.556
290	_ 0%	0%	0%	0%	1.503 59%	0%
365 i	1.673 39%	1.715 32%	1.536 94%	1.647 87%	1.4885 99%	1.598 78%
404.7 h	1.6481 68%	1.6853 62%	1.5245 98%	1.6243 97%	1.4832 99%	1.5847 91%
486.1 F	1.6185 90%	1.6511 89%	1.5097 100%	1.5972 100%	1.4757 100%	1.5679 97%
589.3 D	1.6000 98%	1.6300 98%	1.5000 100%	1.5800 100%	1.4700 100%	1.5560 99%
656.3 C	1.5931 98%	1.6221 98%	1.4962 100%	1.5735 100%	1.4676 100%	1.5512 100%
1064.8	1.577 98%	1.604 98%	1.487 96%	1.558 98%	1.461 81%	1.539 93%
1300	1.574 93%	1.601 94%	1.485 91%	1.555 95%	1.460 57%	1.537 60%
1550	1.573 89%	1.599 91%	1.484 84%	1.554 90%	_ 0%	_ 0%
nc)						33
15-35 °C						000330
						9
						2.498
						none
						**
- ;						> 100
	moderate		low		none	moderate
atible (i)			_			
	C					C
					7/20	С
						C
	i		i			c
	i		i			c
er	i		i		С	С
	С		i sor	ne	С	С
	С		С		С	i
Copper					<u> </u>	i
Steel Best Solvents		htha Vili			i Mate-	C
				ioriaė,	Water, Ethanol	Water, Ethanol, Acetone
Color Stability in sun		low to moderate		moderate		moderate
4 fl. oz.					\$118.25	\$148.00
16 fl. oz.					\$222.50	\$281.75
32 fl. oz.	\$540.5	50	\$350	0.00	\$357.50	\$448.00
					index goes up fa	st by water
	290 365 i 404.7 h 486.1 F 589.3 D 656.3 C 1064.8 1300 1550 nc) 15-35 °C	Sobsible for 1.459-3	SOBN * 1.459-1.656 290	Sobate S	SOBN * SOBS SOBS	SOBN * SOB5 OHGL *

^{* =} VERY LOW FLUORESCENCE 356 nm excitation

Laser Liquids™

SPECIALTY SECONDS SECONDS

LASER LIQUIDS™

HIGH TRANSMISSION LIQUIDS FOR LASER WAVELENGTHS

Custom blended optical liquids formulated to your desired specifications of refractive index, wavelength, and temperature for use with lasers and in other specialty optical applications.

Laser Liquids are:

- OPTICALLY Characterized at laser and other wavelengths.
- **EXTREMELY STABLE**
- HIGHLY TRANSPARENT.
- EXTREMELY LOW IN TOXICITY.
- ECONOMICALLY PRICED.

Two liquids, codes 433 and 3421, have unusually high transmittance in the UV above 2400 angstroms and in the IR below 25000 angstroms.

STANDARD PARAMETERS

n _D RANGE	n _D ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.293 to 1.630	±0.0002	5893 A	3 to 795	25°C	AVAILABLE

Replaces: RI-LL-T-196 Effective: Jan. 15, 2021

CARGILLE LASER LIQUIDS TYPICAL VALUES FOR A FEW REPRESENTIVE LIQUIDS

TECHNICAL BULLETIN RI-LL-T-197 Page 1 of 2

Representative Liqui Formula Code	id / Cat. #	20108 20109 433 3421		20110 \$1056		20130 5610	
Refractive Index Ra	nge for	1.295–1.300		- 1.400	***		
Code (n _D 25 °C)	190 101	1.295-1.300	1.301	-	1.398 -		1.460 – 1.535
REFRACTIVE INDEX @ 25 °C	290	1.31 68%	1.31 51%	1.44 26%	1.43 78%	1.51 67%	1.54 53%
and PERCENT TRANSMITTANCE	365	1.301 100%	1.311 99%	1.414 96%	1.418 100%	1.483 98%	1.507 97%
1 cm at a Few Wavelengths (nm)	486.1 F	1.2970 100%	1.3072 100%	1.4041 99%	1.4055 100%	1.4630 99%	1.4840 99%
Calibrated at n _D ²⁵ ± .0002	589.3 D	1.2950 100%	1.3050 100%	1.4000 99%	1.4000 100%	1.4550 100%	1.4750 100%
11D 20 ± .0002	656.3 C	1.2941 100%	1.3040 100%	1.3983 100%	1.3977 100%	1.4517 100%	1.4713 100%
	1064.8	1.292 99%	1.301 100%	1.394 100%	1.392 98%	1.443 99%	1.462 99%
	1300	1.291 99%	1.301 98%	1.393 100%	1.390 96%	1.442 96%	1.460 96%
	1550	1.291 99%	1.300 98%	1.392 100%	1.390 63%	1.441 71%	1.459 74%
,	2500	1.29 88%	1.30 87%	1.39 95%	_ 0%	_ 0%	0%
Abbe v: $(n_D-1)/(n_F$	-nc)	101	97	69	51	40	38
Temp. Coef. dn _D / dt 15-35 °C	(°C)	000346	000334	000346	000412	000414	000407
Viscosity cSt 25 °C		5	14	17	10	21	46
Density g/cc @ 25	°C	1.905	1.938	1.902	0.933	0.981	1.011
Flash Point °C		none	no		>12	11 30 30 30 30 30 30 30 30	>121
Pour Point °C	10000 00000 0000	<-20	<	20	<-70		<-22
Boiling Point °C		>174	>2	15	>14	9	>149
Toxicity (request) N	(SDS	none	no	ne	low	/	none
Compatible (c) and	incompatib	le (i):					
Acrylic		С	С		С		С
Polycarbonat		С	С		С		С
Polyethylene		С	С		С		С
Polypropylen Polystyrene	е	C	c		C		С
Latex Rubbe	r	C	C		C		C
Neoprene Ru		C	C		C		C
Silicone Rubl		С	i sor	me	i son	ne	i some
Aluminum		С	i		С	*	С
Copper		С	С		С		С
Steel		С	С		С		С
Best Solvents		Freon TF and otl also remove with	soap & water		Ethyl Ether, Nap Xylene, Methyle	ne Chloride	See: Page 2, 5610
Color Stability in sun	4.0	v. high	v. hi		v. hig		v. high
PRICE: 2020	4 fl. oz.	\$240.00	\$240		\$166.		\$185.75
	16 fl. oz. 32 fl. oz.	\$590.00 \$1,003.00	\$590 \$1,003		\$313. \$440.		\$357.75 \$532.50
Notes:		433 & 3421 have % trans.; are po- high in gas solub v. = very	or solvents,		S1056 and 5610 are colorless liquids		

Replaces: RI-LL-T-196 Effective Date: 1/15/2021

CARGILLE LASER LIQUIDS TYPICAL VALUES FOR A FEW REPRESENTIVE LIQUIDS

TECHNICAL BULLETIN RI-LL-T-197

Page 2 of 2

Representative Lic	quid / Cat.#	2	0130	20190	20250	20290	20310
Formula Code			5610	1074	1057B	5	7B63
Refractive Index R possible for Code		1.460) – 1.535	1.535 - 1.557	1.558 - 1.578	3 1.57	9 – 1.630
REFRACTIVE INDEX @ 25 °C	290	1.579 40%	1.633 26%	0%	0%	0%	0%
and PERCENT TRANSMITTANCE	365 i	1.537 95%	1.579 93%	1.608 85%	1.631 89%	1.663 18%	1.705 2%
1 cm at a Few Wavelengths (nm)	404.7 h	1.5252 97%	1.5638 96%	1.5910 96%	1.6139 96%	1.6416 84%	1.6795 70%
Calibrated at	486.1 F	1.5102 99%	1.5457 99%	1.5704 99%	1.5923 98%	1.6163 96%	1.6490 95%
$n_D^{25} \pm .0002$	589.3 D	1.5000 100%	1.5340 100%	1.5570 100%	1.5780 99%	1.6000 99%	1.6300 99%
	656.3 C	1.4960 100%	1.5295 100%	1.5518 100%	1.5724 99%	1.5937 99%	1.6229 99%
	1064.8	1.486 99%	1.519 99%	1.539 98%	1.559 98%	1.579 98%	1.606 99%
	1300	1.484 96%	1.517 95%	1.537 95%	1.556 95%	1.576 96%	1.603 98%
	1550	1.483 75%	1.516 78%	1.535 78%	1.555 81%	1.574 85%	1.602 92%
Abbe v: $(n_D-1)/(r$		35	33	30	29	27	24
Temp. Coef. dn _D / c 15- 35 °C		00039 7	000383	000414	000426	000425	000423
Viscosity cSt 25 °C	D .	124	479	40	177	454	1734
Density g / cc @ 2	5 °C	1.049	1.101	1.062	1.092	1.135	1.196
Flash Point °C		>'	121	>221	>243	>	243
Pour Point °C		<-	-22	<-20	<-6		<5
Boiling Point °C		>1	149	>288	>288	>	476
Toxicity (request)		no	ne	none	none		ow
Compatible (c) inc	ompatible (i)	*				
Acrylic			С	С	С		С
Polycarbona			С	С	С		С
Polyethylen			С	С	С	1	С
Polypropyle		С		С	С	С	
Polystyrene Latex Rubb			<u> </u>	С	С	С	
Neoprene R			0	С	С	-	С
Silicone Rul			ome	С	С		С
Aluminum			C	C	С		С
Copper				C	C		С
Steel		(C	C		C C
Best Solvents	,	Acetone, E Naphtha, 2 Methylene	Ether, (ylene,	Acetone, Ethyl Et Toluene, Turpent	her, Xylene, M		
Color Stability in sur		v. h		v. high	v. high	lov	v
PRICE:	4 fl. oz.	\$18		\$201.25	\$259.25	\$464.75	\$602.75
2020	16 fl. oz.	\$357		\$421.50		\$1,440.50	\$1,958.25
(Subject to Change)	32 fl. oz.	\$532				\$2,671.00	\$3,716.00
Notes:		See: Page	9 1 5610	1074 and 1057 are and almost colorle	ss t	Highest index oxicity; non-restable; light se	eactive;
na = not available	V	= verv					

Fused Silica Matching Liquids

PATENTEL

SPECIALLY ORTHONE LICINIDS

FUSED SILICA MATCHING LIQUIDS

FOR LIQUID FILLED PRISMS, OPTICAL AND LASER SYSTEMS

Colorless Optical Couplants

Closely Match the Dispersion and Refractive Index of Fused Silica

Fused Silica Matching Liquids are:

- USED TO FILL HOLLOW PRISMS for substantial savings over solid glass prisms.
- REUSABLE.
- USED TO CHECK FIBER OPTIC INTERFACES for fiberend aberrations.
- EXTREMELY LOW IN TOXICITY.
- COMPATIBLE with most optical laboratory materials (except latex rubber).

STANDARD PARAMETERS

n _D RANGE	no ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.4587	±0.0005	5893 Ä	15 or 54	25℃	AVAILABLE

Replaces: RI-FS-PL-196 Effective: January 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

FUSED SILICA MATCHING LIQUIDS

The Fused Silica Matching Liquids Code 50350 and 06350 precisely match the refractive index and very closely match the dispersion of fused silica.

Both Codes are formulated to match the refractive index of fused silica at the HeNe wavelength (632.8 nm): other custom formulations will match the refractive index of fused silica at other wavelengths.

Colorless, odorless, and non-toxic (request (M)SDS). Soluble in naphtha, ethyl ether, xylene, and methylene chloride, the Fused Silica Matching Liquids are partly soluble in acetone and insoluble in water and ethanol. The liquids have a known incompatibility with Latex rubber.

The two codes differ in the following respects:

Code	25 °C cSt Viscosity	Cloud Point
50350	19	≤1 °C
60350	80	No Cloud Pt.

For additional properties and optical values, see Typical Characteristics Sheets.

In development as well as field applications, Fused Silica Matching Immersion Liquids will be very useful to those working with fused silica optical fibers, windows, and other optical components in coupling and refractive near-field scanning applications.

Cat. No.	Code No.	1 fl. oz.	4 fl. Oz.	16 fl. Oz.	2 x 16 fl. Oz.	1 gal.	5 gal.
19569	50350	\$ 66.50	\$124.50	\$ 220.25	\$177.25 / 16 oz.	\$601.00	\$ 1,761.25
19571	06350	\$ 68.00	\$127.75	\$ 233.75	\$ 187.50 / 16 oz.	\$658.50	\$ 2,496.25

FOB & SHIPPING POINT: CEDAR GROVE, NJ 07009 – USA
MINIMUM ORDER – USA, CANADA, MEXICO: \$ 50.00 → INTERNATIONAL: \$ 70.00
SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

55 Commerce Road • Cedar Grove • New Jersey • 07009 - 1289 USA Ph: 973-239-6633 • Fax: 973-239-6096 • CargilleLabs@cargille.com • www.cargille.com

FUSED SILICA MATCHING LIQUID CODE 06350 $n (589.3nm) 25^{\circ}C = 1.4587$

30-NOV-17

TYPICAL CHARACTERISTICS

COMPOSITION Aliphatic and Alicyclic Hydrocarbons
APPEARANCE Colorless Liquid
COLOR STABILITY IN DIRECT SUN No visible change after 10 years
INDEX CHANGE RATE BY EVAPORATION Very Low: 0.00002 expected
exposed surface area to volume ratio of 0.2 cm ² /cc @ 25°C for 32 days
<u>ODOR</u> None
<u>FREEZING POINT</u> °C <-18
BOILING POINT °C @ 760mm Hg > 343
<u>FLASH POINT</u> °C C.O.C>216
<u>DENSITY</u> g/cc @ 25°C 0.824
DENSITY TEMP. COEFFICIENT g/cc/°C0.0006
<u>COEF. OF THERM. EXP.</u> cc/cc/°C
<u>VISCOSITY</u> @ 25°C 80 cSt
SURFACE TENSION dynes/cm @ 25°C
SOLUBLE: Carbon Tetrachloride, Diethyl Ether, Freon TF, Heptane, Methylene Chloride, Naphtha, Toluene, Turpentine,
Xylene
PARTLY SOLUBLE: Acetone
INSOLUBLE: Ethanol, Water
COMPATIBLE 6-month immersion at 25°C: Acrylic, Cellulose Acetate, Epoxy, Mylar, Nylon,
Polycarbonate, Polyester, Polyethylene, Polypropylene, Polystyrene, Polyurethane, Polyvinyl Chloride, Phenolic, Teflon,
Neoprene, Fluorosilicone (Silastic 730 RTV), Silicone (Sylgard 184, 3140 RTV) Rubbers, Tygon F-4040-A, Tygothane,
Aluminum, Copper, Brass, Steel; (tests done on one example of each).
INCOMPATIBLE: Latex Rubber, Tygon except F-4040-A

CAUCHY EQUATION: Refractive index as a function of wavelength at 25.0°C W = wavelength (nm)

	n(W) = 1.4471	$9+(3.83343E+03)/W^2+(5)$.66134E+07)	/ W ⁴	
SOURCE OR	WAVELENGTH	REFRACTIVE INDEX	% TRAN	NSMITTANCE	25°C
SPECTRAL LINE	(nm)	25°C	1 mm	1 cm	10 cm
near UV cut off	225	1.55	1	0	0
excimer	248	1.52	1	0	0
local dip	270	1.51	84	18	0
Excimer	308	1.494	99	92	42
N Laser	337	1.485	99	95	60
i(Hg)	365	1.4792	100	98	78
F(H)	486.1	1.4644	100	100	95
e (Hg)	546.1	1.4607	100	100	99
D (Na:D1,D2 mean)	589.3	1.4587	100	100	99
HeNe Laser	632.8	1.4571	100	100	99
C (H)	656.3	1.4564	100	100	100
GaAs laser	840	1.4527	100	99	91
Nd: YAG laser	1064.8	1.451	99	95	60
Diode	1300	1.449	99	88	27
Diode	1550	1.449	98	79	9
$n_F - n_C$	=	0.0080			
Abbe v_D : $(n_D - 1)/(n_F - n_C)$	=	57.1			
emp. coef: dn _D /dt 15 - 35	°C =	-0.000365			

55 Commerce Road • Cedar Grove • New Jersey • 07009 - 1289 USA

Ph: 973-239-6633 • Fax: 973-239-6096 • CargilleLabs@cargille.com • www.cargille.com

FUSED SILICA MATCHING LIQUID CODE 50350 $n (589.3nm) 25^{\circ}C = 1.4587$

30-NOV-17

TYPICAL	CHARACTERISTICS
	Alinhatia and Aliavalia Under

	2 CIMICIE I ENGLIS
<u>COMPOSITION</u>	Aliphatic and Alicyclic Hydrocarbons
APPEARANCE	Colorless Liquid
COLOR STABILITY IN DIRECT SUN	No visible change after 10 years
INDEX CHANGE RATE BY EVAPORATION	Very Low: 0.00001 expected
exposed surface area to volume ratio of 0.2 cm ² /cc @ 25	
ODOR	None
FREEZING POINT °C	<-7
BOILING POINT °C @ 760mm Hg	> 262
FLASH POINT °C C.O.C.	> 138
DENSITY g/cc @ 25°C	0.831
DENSITY TEMP. COEFFICIENT g/cc/°C	-0.0007
COEF. OF THERM. EXP. cc/cc/°C	
VISCOSITY @ 25°C	19 cSt
SURFACE TENSION dynes/cm @ 25°C	. 29
SOLUBLE: Carbon Tetrachloride, Diethyl Ether, Freon,	Heptane, Naphtha, Toluene, Turpentine, Xylene
PARTLY SOLUBLE: Most Organic Solvents	* Company of the second
INSOLUBLE: Ethanol, Water	
COMPATIBLE 10-month immersion at 25°C: Acrylic,	Cellulose Acetate, Epoxy, Mylar, Nylon,
Polycarbonate, Polyester, Polyethylene, Polypropylene,	Polystyrene, Polyurethane, Polyvinyl Chloride, Phenolic, Teflon,

Neoprene, Fluorosilicone (Silastic 730 RTV), Silicone (Sylgard 184), Rubbers, Tygon F-4040-A, Tygothane, Aluminum, Copper, Brass, Steel; (tests done on one example of each).

INCOMPATIBLE: Latex Rubber, Silicone (Sylgard 3140 RTV) Rubbers, Tygon except F-4040-A

CAUCHY EQUATION: Refractive index as a function of wavelength at 25.0°C W = wavelength (nm)

 $n(W) = 1.44690 + (3.98963E+03) / W^2 + (3.75775E+07) / W^4$

	11(11)	70 + (3.26203L103) / VV 1 (3	0.131131101) / VV	
SOURCE OR	WAVELENGTH	REFRACTIVE INDEX	% TRAI	NSMITTANCE	25°C
SPECTRAL LINE	(nm)	25°C	1 mm	1 cm	10 cm
near UV cut off	225	1.54	48	0	0
excimer	248	1.52	93	50	0
local dip	270	1.51	89	31	0
Excimer	308	1.493	98	84	18
N Laser	337	1.485	100	98	86
i(Hg)	365	1.4790	100	99	93
F (H)	486.1	1.4645	100	100	95
e (Hg)	546.1	1.4607	100	100	95
D (Na:D1,D2 mean)	589.3	1.4587	100	100	95
HeNe Laser	632.8	1.4571	100	100	95
C (H)	656.3	1.4564	100	100	99
GaAs laser	840	1.4526	100	100	96
Nd: YAG laser	1064.8	1.450	99	95	57
Diode	1300	1.449	99	88	29
Diode	1550	1.449	98	81	12
$n_{\rm F} - n_{\rm C}$	=	0.0081	_		
Abbe v_D : $(n_D - 1)/(n_F - n_G)$	c) =	56.7			
Temp. coef: dn _D /dt 15 - 3	5°C =	-0.000386			

Optical Gel

PATENT PENDING

OPTICAL GELS AND SUB-LUX GELS

OPTICAL COUPLANT GEL FOR OPTICAL COMPONENTS

Optical Gels are:

- ABLE TO REDUCE OR ELIMINATE INTERNAL REFLECTIONS in fiber optic systems while providing exceptionally high transmittance over a broad range of wavelengths from the near UV to the near infrared.
- USED AS A MODE STRIPPING GEL for removal of extraneous signals otherwise carried on optical fiber cladding allows detectors to record only the signal propagated by the fiber core.
- STABLE over a wide range of temperatures (freezing point below -67 °C, boiling point above 400 °C) and have less tendency to cloud than other popular optical couplants.

NEW SUB-LUX GELS ARE:

- PROFOUNDLY BLACK GELS with refractive indices close to many common glasses. The purpose of each gel is to minimize ghost images caused by secondary reflections off a lens surface. When the gel is near the refractive index of a glass element, light going through the glass goes into the gel and is trapped by absorption in sub-micron particles.
- M STABLE, will not harden, dry out or evaporate.

STANDARD PARAMETERS

n _D RANGE	no ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.457 1.517 Sub-Lux 1.46 1.52 1.54	APPROX.	5893 à	GEL	25°C	AVAILABLE

Replaces: RI-OG-DS-196 Effective Date: Jan. 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

CARGILLE OPTICAL GELS: nD 1.46

Cargille Optical Gels Codes 0607 and 0608 have two primary uses:

First, as an optical coupling for optical fibers and optical components, they reduce or eliminate internal reflectance thus increasing transmittance of light. They do this by having a refractive index and dispersion similar to many glasses and optical plastics, and closely match the refractive index and dispersion of fused silica.

A second primary use is as a mode stripping gel. When one of the gels is coated on a silica fiber that has cladding, it will remove the signal from the cladding. This is useful when evaluating fiber systems using only short fiber lengths, in that the signal that is carried for a short distance in the cladding can be eliminated from the system and detectors will record only the signal propagated by the fiber core. This is quicker and easier than mechanically stripping away the cladding and is non-destructive.

These gels have several very desirable properties. They are transparent to radiation in the near UV, the visible, and the near infrared. We know of no other liquids, gels, or greases with significantly better transmittance. Each has wide temperature stability. Freezing points are below –67 °C and boiling point exceeds 400 °C. This means a more stable refractive index than some other liquid, gel or grease couplants.

WHAT'S THE DIFFERENCE?

Optical Gels Codes 0607 and 0608 are optically and chemically nearly identical, and both are used for coupling optical fibers and other optical components, and for mode stripping. Optical Gel Code 0607 is a thinner gel than 0608 and, upon standing, the surface of 0607 will normally appear to be fluid. Code 0608 appears to be much less fluid.

Optical Gel Code 0607 although not water soluble

although not water soluble, made to "disperse" when

immersed in water to facilitate cleaning.

Optical Gel Code 0608

specially made for applications where water immersion without dispersing or changing is required.

PACKAGED IN	Cat. # 24230	Optical Gel Code 0607	1 x 1 fl oz	2 x 1 fl oz
1 OZ BOTTLES	Cat. # 24231	Optical Gel Code 0608	\$ 89.75	\$ 84.50 / ea.

For Technical Data, Request Typical Characteristics

Replaces: RI-OG-152-DS-196

Effective Date: Jan. 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

CARGILLE OPTICAL GEL: nD = 1.52

BK-7 Matching Liquid

Optical Gel Code 081160 nD = 1.52 has the refractive index of BK - 7 glass and is close to the refractive indices of other frequently used glasses. As an optical couplant, it is used to reduce or eliminate reflection losses. It is not recommended for Acrylic with which it is slightly incompatible at elevated temperatures. It is normally opalescent / translucent but is clear in thin layers as it is normally used. It is usable over a wide range of temperatures: its freezing point is <-45 °C and its boiling point is >370 °C.

PACKAGED IN		Optical Gel	1 fl. oz.	2 x 1 fl. oz.
1 OZ.	Cat. # 24317			
CONTAINERS		1.52	\$ 125.00	\$ 115.75 /ea.

For Technical Data, Request Typical Characteristics

See Sales Policy For Full Terms / Prices Subject To Change Without Notice FOB & Shipping Point: 55 Commerce Rd., Cedar Grove, NJ 07009 USA Minimum Order – USA, Canada, Mexico: \$50.00 • International: \$70.00

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

CARGILLE SUB-LUX GELS

Cargille Sub-Lux Gels are profoundly black gels with refractive indices close to many common glasses. The purpose of each gel is to minimize ghost images caused by secondary reflections off of a lens surface. When the gel is near the refractive index of a glass element, light going through the glass, goes into the gel and is trapped by absorption in sub-micron particles of black pigment.

The gels are very stable and will not harden, dry out, or evaporate. They are available in three refractive indices: nD=1.46, 1.52, and 1.54 at 25 °C.

		_	1 x 1 fl.oz.	1 x 4 fl.oz.	4 x 4 fl.oz.
Cat # 24310 Sub-Lux	1.46	Code 0608C			
Cat # 24320 Sub-Lux	1.52	Code 081160C	\$108.50	\$ 251.75	\$ 212.50 /ea.
Cat # 24330 Sub-Lux	1.54	Code 081160C	<i>(b</i>)		
			J		

55 Commerce Road • Cedar Grove • New Jersey • 07009 - 1289 USA Ph: 973-239-6633 • Fax: 973-239-6096 • CargilleLabs@cargille.com • www.cargille.com

OPTICAL GEL CODE 0607 $n (589.3nm) 25^{\circ}C = 1.457$ TYPICAL CHARACTERISTICS

30-NOV-17

THEAL CHARACTERISTICS
COMPOSITION Aliphatic Hydrocarbons and Gelling Agents
APPEARANCE
COLOR STABILITY IN DIRECT SUN No visible change after 9 years
INDEX CHANGE RATE BY EVAPORATION Very Low: 0.0000 expected
exposed surface area to volume ratio of 0.2 cm ² /cc @ 25°C for 32 days
<u>ODOR</u> None
<u>FREEZING POINT</u> °C < -67
BOILING POINT °C @ 760mm Hg >416
FLASH POINT °C C.O.C. >245
<u>DENSITY</u> g/cc @ 25°C 0.878
DENSITY TEMP. COEFFICIENT g/cc/°C0.0006
COEF. OF THERM. EXP. cc/cc/°C 0.0007
VISCOSITY @ 25°C Soft Gel
OIL SEPERATION 100°C for 24 hours, % by weight < 0.05
<u>WEIGHT LOSS</u> 100°C for 24 Hours, %<0.05
WATER IMMERSIONGel disperses
PARTLY SOLUBLE: Most Organic Solvents (to remove from glass use Kimwipe & Glass Cleaner)
INSOLUBLE: Acetone, Ethanol, Water
COMPATIBLE 10-month immersion at 25°C: Acrylic, Cellulose Acetate, Epoxy, Mylar, Nylon,
Polycarbonate, Polyester, Polyethylene, Polypropylene, Polystyrene, Polyurethane, Polyvinyl Chloride, Phenolic,

Teflon, Neoprene, Fluorosilicone (Silastic 730 RTV), Silicone (Sylgard 184, 3140 RTV) Rubbers, Aluminum, Copper, Brass, Steel; (tests done on one example of each).

INCOMPATIBLE: Latex Rubber, Tygon types: S-50-HL, R-3603, B-44-3

CAUCHY EQUATION: Refractive index as a function of wavelength at 25.0°C W = wavelength (nm)

 $n(W) = 1.44503E + (4.40960E+03) / W^2 + (-2.85878E+07) / W^4$

	n(W) = 1.44503	E + (4.40960E+03) / W ² + (-2.858/8E+0	/) / W ⁴	
SOURCE OR	WAVELENGTH	REFRACTIVE INDEX	% TRAN	NSMITTANCE	25°C
SPECTRAL LINE	(nm)	25°C	1 mm	1 cm	10 cm
near UV cut off	320	1.486	83	15	0
i (Hg)	365	1.477	98	81	12
h (Hg)	404.7	1.471	99	92	42
F' (Cd)	480	1.464	100	98	78
F (H)	486.1	1.463	100	98	79
e (Hg)	546.1	1.459	100	98	86
D (Na D1, D2 mean)	589.3	1.457	100	99	90
HeNe laser	632.8	1.456	100	99	92
C' (Cd)	643.9	1.455	100	99	90
C (H)	656.3	1.455	100	99	92
Ruby Laser	694.3	1.454	100	100	98
GaAs laser	840	1.451	100	100	99
Nd: YAG laser	1064.8	1.449	100	95	61
Diode	1300	1.448	99	91	39
Diode	1550	1.447	98	80	11
$\overline{n_F - n_C}$	=	0.008			
Abbe v_D : $(n_D - 1)/(n_F - n_C)$	=	57			
Temp. coef: dn_D/dt 15 - 35	°C =	-0.00035			

55 Commerce Road • Cedar Grove • New Jersey • 07009 - 1289 USA

Ph: 973-239-6633 • Fax: 973-239-6096 • CargilleLabs@cargille.com • www.cargille.com

OPTICAL GEL CODE 0608 n (589.3nm) 25°C = 1.457 TYPICAL CHARACTERISTICS

30-NOV-17

COMPOSITION	Aliphatic Hydrocarbons and Gelling Agents
APPEARANCE	Colorless Gel
COLOR STABILITY IN DIRECT SUN	No visible change after 9 years
INDEX CHANGE RATE BY EVAPORATION	Very Low: 0.0000 expected
exposed surface area to volume ratio of 0.2 cm ² /cc @ 25	5°C for 32 days
ODOR	None
FREEZING POINT °C	< -67
BOILING POINT °C @ 760mm Hg	>416
ELASH POINT °C COC	>245

 BOILING POINT
 °C @ /60mm Hg
 >416

 FLASH POINT
 °C C.O.C.
 >245

 DENSITY
 g/cc @ 25°C
 0.878

 DENSITY TEMP. COEFFICIENT
 g/cc/°C
 -0.0007

 COEF. OF THERM. EXP. cc/cc/°C
 0.0008

 VISCOSITY
 @ 25°C
 Soft Gel

OIL SEPERATION 100°C for 24 hours, % by weight..... <0.05 WEIGHT LOSS 100°C for 24 Hours, %.....<0.05

PARTLY SOLUBLE: Most Organic Solvents (to remove from glass use Kimwipe & Xylene)

INSOLUBLE: Acetone, Ethanol, Water

COMPATIBLE 10-month immersion at 25°C: Acrylic, Cellulose Acetate, Epoxy, Mylar, Nylon,

Polycarbonate, Polyester, Polyethylene, Polypropylene, Polystyrene, Polyurethane, Polyvinyl Chloride, Phenolic, Teflon, Neoprene, Fluorosilicone (Silastic 730 RTV), Silicone (Sylgard 184, 3140 RTV) Rubbers, Aluminum, Copper, Brass, Steel; (tests done on one example of each).

INCOMPATIBLE: Latex Rubber, Tygon types: S-50-HL, R-3603, B-44-3

CAUCHY EQUATION: Refractive index as a function of wavelength at 25.0°C W = wavelength (nm)

 $n(W) = 1.4451400 + (4.3176E+03) / W^2 + (-1.80659E+07) / W^4$

the state of the s					
SOURCE OR	WAVELENGTH	REFRACTIVE INDEX	% TR	ANSMITTANC	E 25°C
SPECTRAL LINE	(nm)	25°C	1 mm	1 cm	10 cm
near UV cut off	320	1.486	70	3	0
i (Hg)	365	1.477	98	84	16
h (Hg)	404.7	1.471	99	91	40
F' (Cd)	480	1.464	100	97	71
F (H)	486.1	1.463	100	97	72
e (Hg)	546.1	1.459	100	98	80
D (Na D1, D2 mean)	589.3	1.457	100	99	90
HeNe laser	632.8	1.456	100	99	92
C' (Cd)	643.9	1.455	100	100	95
C(H)	656.3	1.455	100	100	96
Ruby Laser	694.3	1.454	100	100	99
GaAs laser	840	1.451	100	100	99
Nd: YAG laser	1064.8	1.449	100	97	74
Diode	1300	1.448	99	91	39
Diode	1550	1.447	98	83	16
$\overline{n_F - n_C}$	=	0.008			
Abbe v_D : $(n_D - 1)/(n_F - n_C)$	=	57			
Temp. coef: dn _D /dt 15 - 35°C	=	-0.00035			

55 Commerce Road • Cedar Grove • New Jersey • 07009 - 1289 USA

Ph: 973-239-6633 • Fax: 973-239-6096 • CargilleLabs@cargille.com • www.cargille.com

OPTICAL GEL CODE 081160 $n (589.3nm) 25^{\circ}C = 1.517$ TYPICAL CHARACTERISTICS

Phthalate Esters and Gelling Agents

30-NOV-17

COMPOSITION	Fillialate Esters and Oching Agents
APPEARANCE	Colorless Translucent
COLOR STABILITY IN DIRECT SUN	May slightly discolor in 1 to 8 years
INDEX CHANGE RATE BY EVAPORATION	Very Low: -0.00001 expected
exposed surface area to volume ratio of 0.2 cm ² /cc @ 25	5°C for 32 days
<u>ODOR</u>	Slightly Characteristic
FREEZING POINT °C	< -45
BOILING POINT °C @ 760mm Hg	. >370
FLASH POINT °C C.O.C.	>199
DENSITY g/cc @ 25°C	. 1.110
DENSITY TEMP. COEFFICIENT g/cc/°C	0.0008
COEF. OF THERM. EXP. cc/cc/°C	0.0007
VISCOSITY @ 25°C	Soft Gel
PARTLY SOLUBLE: Most Organic Solvents (to remove	ve from glass use Kimwipe & Glass Cleaner)

INSOLUBLE: Acetone, Ethanol, Water

COMPOSITION

COMPATIBLE 10-month immersion at 25°C: Acrylic, Cellulose Acetate, Epoxy, Mylar, Nylon,

Polycarbonate, Polyethylene, Polypropylene, Phenolic, Teflon, Fluorosilicone (Silastic 730 RTV), Silicone (Sylgard 184, 3140 RTV) Rubber, Aluminum, Copper, Brass, Steel; (tests done on one example of each).

INCOMPATIBLE: Polystyrene, Polyurethane, Polyvinyl Chloride, Latex Rubber, Neoprene Rubber, Tygon, (Acrylic and Polycarbonate at 55°C)

CAUCHY EQUATION: Refractive index as a function of wavelength at 25.0°C W = wavelength (nm)

 $n(W) = 1.49614 + (6.92199E+03) / W^2 + (8.07052E+07) / W^4$

	11.47014	(0.72177L:03)/ W . (0.07032E 107)	7 **	
SOURCE OR	WAVELENGTH	REFRACTIVE INDEX	% TRAN	SMITTANCE	25°C
SPECTRAL LINE	(nm)	25°C	0.01 mm	0.1mm	1 mm
near UV cut off	320	1.571	97	72	04
i (Hg)	365	1.553	98	82	13
h (Hg)	404.7	1.541	99	87	26
F' (Cd)	480	1.528	99	93	48
F (H)	486.1	1.527	99	93	49
e (Hg)	546.1	1.520	99	95	60
D (Na D1, D2 mean)	589.3	1.517	100	96	68
HeNe laser	632.8	1.514	100	97	71
C' (Cd)	643.9	1.513	100	97	73
C(H)	656.3	1.513	100	97	74
Ruby Laser	694.3	1.511	100	98	76
GaAs laser	840	1.506	100	98	83
Nd: YAG laser	1064.8	1.502	100	99	86
Diode	1300	1.500	100	99	89
Diode	1550	1.499	100	99	90
$\overline{n_F - n_C}$	=	0.014			
Abbe v_D : $(n_D - 1)/(n_F - n_C)$	=	36			
Temp. Coef: dn _D /dt 15 - 35	5°C =	-0.00038			

Meltmounts[™] for Microscopy

PATENTED

SPECIALTY OPTICAL LIQUIDS

MELTMOUNTS™ FOR MICROSCOPY

INCLUDING MELTMOUNTS™ for ASBESTOS THERMOPLASTIC SLIDE MOUNTING AND OTHER OPTICAL COUPLING

Meltmounts™ are:

- INSTANT, they are thermal mountants and require " no oven-time "
- 100% USABLE, contain no solvents.
- LESS EXPENSIVE per slide.
- REVERSIBLE, thermally, for particle retrieval or reorientation.
- SOLUBLE in toluene if needed for special techniques or clean-up.
- FLUID at 65°C, a temperature chosen because it makes a permanent mount and is harmless to the majority of specimens.
- PCB-FREE DIRECT REPLACEMENTS for "older style" media.

OLD MEDIA

MELTMOUNT" EQUIVALENTS

Canada Balsam and other alternatives

Meltmount™ 1.539

Aroclor

Meltmount™ 1.662

Naphrax

Meltmount™ 1.704

STANDARD PARAMETERS

n _D RANGE	n _D ACCURACY	WAVELENGTH CHARACTERIZATION	VISCOSITY (cSt @ 25°C)	CALIBRATION TEMPERATURE	MATERIAL SAFETY DATA SHEET
1.539 1.55 1.582 1.605 1.662 1.680 1.704	±.001	5893 Å	> 500,000 (flowable solid)	25°C	AVAILABLE

Replaces: MOM-MM-DS-196 Effective Date: Jan. 15, 2021

Cargille Laboratories

55 Commerce Road • Cedar Grove • New Jersey • 07009-1289 USA Phone: 973-239-6633 • Fax: 973-239-6096 • WWW.CARGILLE.COM

Including MELTMOUNTSTM for Asbestos

The Cargille Meltmount™ series of mounting media are specially formulated optical-quality thermoplastics for use in microscope slide mounting and in other optical coupling applications.

Meltmounts™ are:

- 1. **Instant** they are thermal mountants and require "no oven time"
- 2. 100 % useable contain no solvents
- 3. Less Expensive per slide
- 4. Reversible thermally, for particle retrieval or re-orientation
- 5. Soluble in toluene if needed for special techniques or clean-up
- 6. Fluid at 65 °C a temperature chosen because it makes a permanent mount and protects the majority of specimens from thermal changes
- 7. PCB-FREE
- 8. Direct replacements for 'older style' media

Old Media			Meltmounts™ Equivalent
•	Canada Balsam	•	Meltmount™ 1.539
•	Aroclor 5442	•	Meltmount™ 1.662
•	Naphrax	•	Meltmount™ 1.704

MELTMOUNT™ 1.539 Code 53

Cat.#24140 Patent Pending

70.75 /fl.oz

Meltmount™ 1.539 has a refractive index (nD @ 25 °C) of 1.539 and an Abbe V dispersion of 45 making it optically similar to Canada Balsam and, therefore, ideal for mounting many biological specimens but without the long drying time of Canada Balsam.

MELTMOUNT™ FOR CHRYSOTILE ASBESTOS Code 25761

Cat.#24145 Patent Pending \$ 77.75 /fl.oz

Meltmount™ Code 25761 has dispersion characteristics making it appropriate for mounting chrysotile asbestos - CALL TO CHECK AVAILABILITY

MELTMOUNT™ 1.582 Code 5870

Cat.#24150 Pa

Patented \$ 70.75 /fl.oz

Meltmount™ 1.582 has a refractive index (nD @ 25 °C) of 1.582 and an Abbe V dispersion of 33. Its optical clarity makes it the preferred choice for minimum visible absorption.

MELTMOUNT™ 1.605 Code 5870

Cat.#24152

Patented

\$ 70.75 /fl.oz

Meltmount™ 1.605 has a refractive index (nD @ 25 °C) of 1.605 and an Abbe V dispersion of 30, making it appropriate for mounting asbestiform Tremolite, Anthophyllite and Actinolite.

MELTMOUNT™ 1.662 Code 5870

Cat.#24160

Patented

70.75 /fl.oz

Meltmount™ 1.662 has a refractive index (nD @ 25 °C) of 1.662 and an Abbe V dispersion of 26, optically similar to Aroclor 5442, but is PCB-free.

MELTMOUNT™ 1.680 Code 5870

Cat.#24165

Patented

\$ 70.75 /fl.oz

MeltmountTM 1.680 has a refractive index ($n_D @ 25 °C$) of 1.680 and an Abbe V dispersion of 25, making it appropriate for mounting Amosite and Crocidolite asbestos.

MELTMOUNT™ 1.704 Code 5870

Cat.#24170

Patented

70.75 /fl.oz

Meltmount™ 1.704 has a refractive index (n_D @ 25 °C) of 1.704, similar to naphrax, and an Abbe V dispersion of 24.

QUICK-STICK™

Cargille Meltmount™ is now available in a convenient stick form called Quick-Stick™. It can be used to make permanent microscope slide mounts quickly.

Quick-Stick™ can be applied to a slide on a hotplate. As soon as the specimen and cover glass are positioned and the slide is cooled, you have a permanent prepared slide that can be reversed by reheating, if you should wish to retrieve a particular particle.

DESCRIPTION	ESCRIPTION nD		CAT. NO.		<u>2/3 oz.</u>	
Quick-Stick™	1.539	Code 53	#24040	\$	66.75 /ea	1
Quick-Stick™	1.582	Code 5870	#24050	\$	66.75 /ea	ı
Quick-Stick™	1.605	Code 5870	#24052	\$	66.75 /ea	l
Quick-Stick™	1.662	Code 5870	#24060	\$	66.75 /ea	ı
Quick-Stick™	1.680	Code 5870	#24065	\$	66.75 /ea	l
Quick-Stick™	1.704	Code 5870	#24070	\$	66.75 /ea	1

Meltmount™ / Quick Stick™ and the proper care of your slides

Meltmount™ is a THERMAL PLASTIC MATERIAL. This means its viscosity is dependent on temperature, (inversely dependent). As the temperature increases the viscosity decreases. There is no sharp melting point. Being thermal plastic, it is capable of "cold flow". This means the Meltmount™, the specimen, the slide, and the cover slip can all move independently of each other given a mix of time, temperature, and lateral pressure or gravity.

Storage of prepared slides: treat them as the valuable items they are. Store:

- A. Flat, cover slip on top
- B. In the dark
- C. Away from dust and fumes
- D. Meltmount™ is meant to be thermally reversible. Don't allow this to happen inadvertently by storing or transporting prepared slides above 88 °F, (31.1 °C).

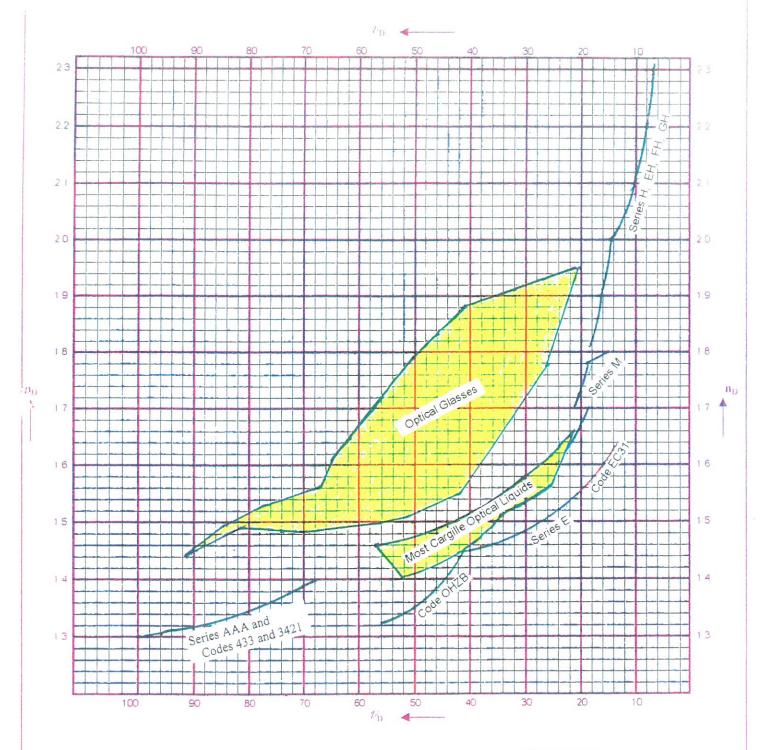
For complete technical information on MeltmountsTM contact the Cargille Technical Staff at 973-239-6633

TM Meltmount and Quick-Stick are Trade Names of Cargille Laboratories

FOB & SHIPPING POINT: CEDAR GROVE, NJ 07009 – USA
MINIMUM ORDER – USA, CANADA, MEXICO: \$ 50.00 ← INTERNATIONAL: \$ 70.00
SEE SALES POLICY FOR FULL TERMS / PRICES SUBJECT TO CHANGE WITHOUT NOTICE

CARGILLE LABORATORIES

55 Commerce Road • Cedar Grove NJ 07009-1289 • USA
Ph: (973) 239-6633 8:15 AM - 4:45PM M-Th 8:00 AM - 12:00 PM Fri. ET
FAX: (973) 239-6096 • WWW.CARGILLE.COM


Diagrams of Cargille Optical Liquids

SPECIALTY OPTICAL LIQUIDS

DIAGRAMS OF CARGILLE OPTICAL LIQUIDS

Diagrams of Cargille Optical Liquids plotted for refractive index versus dispersion reveal some interesting information:

- CARGILLE OPTICAL LIQUIDS fall into a somewhat different n_D/v_D range than optical glasses as seen in similar Optical Glass diagrams published by optical glass manufacturers. This different range makes possible some innovative optical configurations.
- CARGILLE OPTICAL LIQUIDS cover a wider range of refractive indices than do optical glasses.
- 3. CARGILLE OPTICAL LIQUIDS are generally higher in dispersion than optical glasses.

